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Abstract: Several rotating equipment such as – centrifugal pumps and positive displacement pumps are extensively used in 

Water treatment plant for producing potable water from raw water. Centrifugal pumps are required for delivering water from 

one unit of the plant to the others, while the positive displacement pumps are used for dosing different chemicals at the various 

stages of water treatment process. Smooth normal operation of these pumps is essential for ensuring both the production 

quality and quantity. It is extremely important to detect any anomaly or malfunction in this rotating equipment at an early stage. 

This helps to take the appropriate corrective maintenance actions and prevent any catastrophic failure, equipment down time, 

quality deviation and/or production loss. However, there are very few methods available in the literature for detecting faults or 

anomalies in the pumps, particularly for the positive displacement pumps in real industrial application using only routinely 

available process data -such as: flow, speed, stroke, discharge pressure etc. In this paper, a machine-learning based Early Fault 

Detection & Diagnostic system is developed to monitor the rotating equipment in operation, detect a fault at initiation, pinpoint 

the root cause, and to send out alerts for corrective maintenance with suggested remedial actions. The detection works by 

building a baseline machine learning model of the equipment performance under normal operating conditions which is then 

used to monitor the health deviation of the equipment in real time and predict a fault at a very early stage, much before it is 

observed by operations personnel. The proposed fault detection method relies only on routine process data – flow, speed, 

stroke etc. and does not require any additional measurements like vibration, motor current, acoustic emission data. The 

diagnostics tool identifies the most probable root causes of the failures and provides the possible failure resolution methods 

based on the historical maintenance records of similar equipment. The proposed algorithm combines data-driven and 

knowledge-based approaches. The efficacy of the proposed method was demonstrated to detect and identify incipient faults in 

positive displacement chemical dosing pumps in a water treatment plant. The detected and identified faults were validated 

using the maintenance records of the pumps. 

Keywords: Anomaly Detection, Machine Learning, Natural Language Processing, Predictive Maintenance,  

Rotating Equipment, Pumps 

 

1. Introduction 

Water treatment plants employ multiple levels of treatment 

processes to produce potable water from raw water. Most of 

the individual processes extensively use several critical 

rotating equipment like positive displacement chemical 

dosing pumps and centrifugal pumps. Dosing pumps control 

the release of chemicals at the various stages of water 

treatment process [1]. Centrifugal pumps deliver water from 

one unit to discharge pipes or other units within the plant. 

Getting these pumps to operate efficiently and normally 

without failures is critical to ensuring the water quality. A 
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minor fault in a pump may eventually develop to a severe 

one, which may impact the safety and productivity of plants. 

Therefore, detecting faults in pumps at an early stage is 

extremely important for efficient plant operation. Such 

Early fault detection and predictive maintenance algorithm 

will help in reducing downtime and catastrophic failures 

down the line. Such a procedure will also help to monitor 

and compare the performance among similar pumps and 

provide the operator an option to choose the best 

performing pump or combination of pumps depending on 

the operational demand [2]. 

Fault detection and identification (FDI) methods of pumps 

can be broadly classified into two categories – (i) model-

based and (ii) data-based approaches. Model based FDI 

approaches rely on explicit mathematical models derived 

based on first principles. Two main such approaches for 

pump fault detection are methods based on state observer and 

parameter estimation [3]. However, in practice, the model-

based approaches often fail to work as it is extremely 

difficult and time consuming to derive accurate first 

principles-based models for complex equipment/ systems 

such as pumping system [4, 5]. The data-driven approaches, 

on the other hand, directly use the monitored variables/ 

parameters – process variables like flow, speed, inlet/outlet 

pressures & temperature, vibration measurements at different 

locations, Electrical signature like motor current, acoustic 

emission signal etc. to infer the faults. These methods are 

more suitable for fault detection in complex systems since 

they do not require any accurate physical mathematical 

models. Prominent among these data-driven approaches are 

the (i) frequency and time–domain analysis based [6–8], and 

(ii) artificial intelligence (AI)/ Machine Learning (ML) based 

FDI methods [9–13]. 

Frequency and time domain analysis-based methods are 

very popular and effective in pump fault detection in which 

vibration and acoustics emissions signal are analyzed in 

frequency domain and/or time domain to identify the 

signatures/patterns of various commonly encountered faults 

[6-8]. The availability of cost-effective data acquisition 

systems which enable measurements of several important 

process variables along with the great advancements in 

machine learning (ML) techniques paved way for the 

application of artificial intelligence (AI) in FDI. The AI 

based data-driven methods mainly rely on ML based and/or 

statistical based techniques to establish a model that uses 

historical operational or machine condition data. Zouari et al. 

[10] proposed a real-time fault detection method for a 

centrifugal pump using multi-layer perceptron neural 

network and fuzzy techniques based on vibration 

measurements. The system was successful to detect various 

fault types, such as - partial flow rates, loosening of front/rear 

pump attachments, misalignment, cavitation, and air injection 

on the inlet, using experimental data. Two different artificial 

neural network-based approaches were presented in 

Rajakarunakaran et al. [11] wherein a feed-forward network 

with back propagation algorithm and a binary adaptive 

resonance network were developed for the fault detection of 

a centrifugal pumping systems. Both models showed good 

performance when applied to simulated data. Ahmed et al. 

[12] used Principal Component Analysis (PCA) based 

Squared Prediction Error (SPE), namely Q-statistics on 

vibration data from a reciprocating compressor for fault 

detection and diagnosis. In Liang et al. [13], a fault detection 

and isolation scheme based on Sparse Auto-Encoder (SAE) 

was developed and applied on centrifugal pumps in a 

petrochemical plant using industrial multivariate monitoring 

data set. Robust Mahalanobis distance which combines 

multiple variables into one system -wide health indicator was 

applied for fault detection. 

However, still there remains some challenges as far as 

fault detection and identification of pumping system is 

concerned. 

1) Most of the methods proposed in the literature are 

demonstrated using simulated and experimental data. 

There are very few methods that were illustrated using 

real industrial data. Thus, lacking tests in real industrial 

applications. 

2) Majority of the existing FDI methods of pumps rely on 

ML based classification models which require historical 

data of both normal and various fault conditions for 

model development. However, most of the available 

data belong to normal operating conditions, while faulty 

data are usually rare and sometimes cannot be obtained. 

Hence, we need to develop robust anomaly detection 

models that can take full advantage of the large volume 

of healthy data and effectively detect the fault. 

3) Furthermore, most of the conventional FDI techniques 

for pump are based on vibration, motor current 

signature, acoustic emission data, which mainly detect 

various mechanical and electrical faults such as – 

bearing damage, looseness, unbalance, broken rotor bar, 

VFD fault. These methods require additional costly 

instruments to measure and analyze these vibration, 

current, acoustic data. All these faults develop gradually 

over time and needs to be detected at an early stage 

before the equipment breakdown happens. However, for 

the positive displacement reciprocating diaphragm 

pumps which are widely used for properly dosing 

various chemicals in water treatment plants to control 

the water quality, it is very important to ensure that the 

dosing of chemicals happens appropriately. Any 

underdosing (low flow), overdosing (high flow) or 

unstable flow conditions in these pumps needs to be 

detected and rectified as soon as possible. To the best of 

our knowledge, there is no FDI method available in 

literature particularly for reciprocating positive 

displacement pumps which solely relies on routine 

operation data of a pump such as – speed, stroke length, 

discharge flowrate and readily detects any anomaly in 

the pump in the form of underdosing, overdosing, 

unstable flow etc. 

To overcome the above challenges, in this paper, we proposed 

a novel AI based method for early fault detection and 

identification which rely on ML models developed solely using 
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routine operation data such as – flow, speed, stroke length of a 

pump during its normal operating conditions. The ML models 

thus developed were applied in detecting early fault in various 

types of real industrial pumps (including both positive 

displacement and centrifugal types) from a water treatment plant 

in a real-time manner. The detected faults in the pumps were 

validated using the maintenance records. Furthermore, to make 

the diagnosis of the detected fault and to recommend accurate 

and effective corrective actions to the operators, the proposed 

data-driven method was complemented by the domain 

knowledge. The past patterns related to the pump faults were 

learned from historical maintenance logs and from collective 

knowledge of the operators. Maintenance logs contain 

information about type of faults, root causes and repairs carried 

out on each equipment over its lifetime [14]. The state-of-the-art 

Natural language processing (NLP) algorithms were applied to 

combine and utilize all such unstructured data from different 

sources -such as maintenance records, operators/expert 

knowledge to build a corpus of knowledge which is then used to 

find the most probable root cause and resolution for a fault that 

has been identified. 

The rest of the paper is organized as follows – in section 2, 

the proposed method for detecting and identifying the faults 

in industrial pumps is presented. The various steps involved 

in the proposed method – data preparation & feature 

extraction, model building, model validation, fault prediction, 

fault resolution tree building for root cause identification and 

recommendations are discussed in section 2. The 

effectiveness of the proposed method in detecting and 

identifying faults in real industrial reciprocating positive 

displacement type diaphragm pumps are discussed in results 

section (section 3). Finally, the paper is concluded in section 

4 (conclusion section). 

2. Method 

The proposed algorithm combines data-driven and 

knowledge-based approaches. Data used can be from 

multiple sources as represented in the overall workflow in 

Figure 1. The general flow and contents of the algorithm 

described above has been represented. The model building 

happens offline – Process model building is periodic or 

engineer-selected and the fault tree is built once initially and 

then updated periodically. The fault prediction and 

recommendation steps are online and happens as and when 

sensor data is received. 

 

Figure 1. Schematic Representation of the methodology. 

The process of Early prediction of faults requires multiple 

processing steps as described below. 

2.1. Data Preparation and Feature Identification 

To create a comprehensive fault detection and diagnosis 

model, the data needs to come from multiple sources as listed 

below. 

1) Process/operation data collected from Process Historian. 

2) Standard characteristics/performance curves serve as a 

reference for the expected error limits for a pump in 

normal operation 

3) Pump Calibration data 

4) Maintenance logs extracted from Asset Management 

System 

5) Optional addition of domain knowledge-based 

recommendations for possible failures 

6) Equipment and gauge configuration - The rotating 

equipment may operate in groups or individually. 

Similarly, there might be sensors that are measuring 

parameters corresponding to either individual 

equipment or group of equipment (eg: flow meter, 

pressure meter). This sensor configuration required to 

model the pump operation as the input parameters are 

derived from these individual/group tags. 

After data collection, the relevant features that influence 

the pump flow are identified using Feature Importance 

calculations on the process data. The data for the model 

building process is selected from a healthy operation period. 

The model parameters and the standard pump curves are used 

to set threshold limits (derived from the typical observed 

normal operating range) to pump operations and thereby tune 

the alert settings. Besides incorporating expert knowledge on 

known corrective actions for commonly diagnosed 

equipment fault, maintenance logs that have been historized 

over several years might also provide additional information 

on the actions to resolve other less common types of failure. 

However, these are unstructured and contain lots of free-text 

natural language since they are mostly manual entries 

without any set standards and therefore require pre-
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processing before extracting patterns. Text analytics is used 

to sanitize the data by removing stop words, stemming, etc. 

2.2. Model Building 

For each equipment group, the features are identified 

based on the type of equipment, equipment configuration and 

operation mode. To create the baseline model, we may use 

the standard calibration curve and/or raw calibration data. 

For example, the calibration data or a ‘reference period’ data 

where the pump was running without any failure can be 

utilized to model the ‘normal’ behavior of the pump. Once 

the reference data is selected, the outliers in the data need to 

be removed. These outliers occur during changeover of pump 

or ramping up the speed/stroke which are to be treated as 

transient data. Once the transient data is removed, the data is 

equivalent to stable operation/calibration data. 

A machine learning model is built using all these features. 

The model provides an insight on the expected range of 

stable operation and allows to configure the alert limits. The 

allowable limits are decided based on the variations observed 

during stable operation. The model parameters are converted 

to standard performance index and deviation index to rank 

the pumps in the same group and identify a best performing 

pump/group of pumps and alert to the operator/engineer. 

Thus, the algorithm helps the operator to choose the best 

pump and combination of pumps at any given time. We will 

demonstrate one example of model building on reference or 

calibration data for PD pumps in the coming sections, 

however, the approach is valid for centrifugal pumps as well. 

Figure 2 shows a model built from the reference period data 

for a PD pump. The model can predict the flow for a given 

stroke and speed of the pump. Using this the actual behavior of 

the pump for a selected period is compared with expected 

behavior to give a quick indication about the current 

performance of the pump. Once a model is built using pump 

calibration data or reference period data, we also calculate 

additional parameters from the model coefficients to create a 

comparative performance chart of the pump in one equipment 

group. Such a comparison of 6 pumps in a group is shown in 

Figure 3. The indices are defined such that a lower deviation 

index indicates lesser variance in pumping output for any 

pump. Therefore, the best pump in the group (Pump 4 in the 

example) should be the one with lower deviation index. 

 

Figure 2. Model built on normal operation data for a Positive Displacement 

(PD) pump (#3310). 

Note: Black dotted line represents the model performance; Blue region is the 

operating points falling within the acceptable 2σ. Red region are the 

operating points falling outside the acceptable range. 

 

Figure 3. Comparison of pump performance based on the model coefficients. 

Selected best pump in the group is marked in green. 

2.3. Model Validation 

In the model validation stage, the model is tested on unseen 

data and any deviation (greater than the allowed threshold) of 

the output parameter (eg: flow) from the model is considered 

as a fault. Such faults identified by the algorithm are 

corroborated using past maintenance records and/or vibration 

monitoring results. Figure 4 shows the trend of deviation in 

actual flow from the model/reference period. The threshold 

limits indicated in green are selected based on reference period 

or normal operation period. This flow deviation trend is an 

input to the Early Fault prediction module. 

 

Note: The plot is disconnected because the equipment was stopped intermittently based on the operational demand. 

Figure 4. Monitoring of flow deviation over time indicated in green (within threshold) and red (out of threshold). 
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2.4. Fault Prediction 

A useful output for the operator/engineer is the alerts from 

the algorithm. To set the alerts, we use the online flow 

deviation data and model the trend in flow deviation using an 

autoregressive model. This model can predict the trends in 

advance and with the help of the limits/thresholds identified 

from the stable period model it can identify any faults that 

are likely to occur much in advance. To avoid false alarms, 

two additional prediction KPIs were defined on predicted 

flow deviation. These two KPIs indicate the criticality of the 

threshold breaches by the predicted flow deviation – 

magnitude and duration of flow deviation exceeding the 

threshold. The threshold values of these KPI’s can be tuned 

in the algorithm allowing the user to consider the allowable 

variations in pumping output such that the alerts are 

generated only for actual faults. The threshold values of these 

two KPIs should be tuned accordingly to optimize between 

false positive and false negative reduction. 

 

Figure 5. (a) Prediction of flow deviation for the next x minutes, (b) Monitoring of KPI's for creating advance alerts. 

Figure 5(a) shows the flow deviation (shown in blue solid 

line) input into autoregressive model which in turn predicts 

the future trend of the deviation (shown in red dotted lines). 

The blue solid line indicates the calculated deviation of the 

flow from the model. The red dotted lines indicate the 

advance predictions of the flow deviation trend. In the above 

example, the occurrence of low flow at 490 minutes was 

detected and alerted at 470 minutes. Two different KPIs 

based on the magnitude and duration of predicted flow 

deviation exceeding the threshold limit were used to detect 

the fault. Figure 5(b) depicts the trends of these two KPIs 

(see two trend plots at the bottom in Figure 5(b)) computed 

from the trend of flow deviation (see the trend plot at the top 

in Figure 5(b)). Red dots indicate threshold breaches in the 

KPI trends. Alerts to the operator can be triggered when 

these KPIs breach their threshold limits. This approach was 

tested on PD pumps but is applicable to centrifugal pumps as 

well. 

2.5. Fault-Resolution Tree Building and Recommendation 

Once a fault is detected, an alert must be generated so that 

the operator can take actions. Instead of providing just an 

alert on the pump condition, it is of value if the algorithm can 

provide a list of suggested resolutions to the operator based 

on the history of the equipment group, domain knowledge 

and the type of fault identified. When the operator sees an 

alert for a fault, the Diagnostics algorithm also gives 

probable root-cause and recommendations for maintenance 

actions. The main input to this recommendation system is a 

library established through expert knowledge for known 

faults and supplemented with past maintenance records from 

the plant. Additional inputs can also come from knowledge 

acquired by the operators over the years. The algorithm is 

built using Natural Language Processing (NLP) methods. 

Each of the fault and resolution description text is tokenized, 

vectorized, and mapped. TF-IDF (Term-Frequency Inverse-

Document Frequency) is computed to understand the 

importance of each word in the document. A ranking of TF-

IDF allows to recognize the main fault categories from the 

maintenance data. The algorithm is trained to understand 

inconsistent vocabulary, industry-specific terms, synonyms, 

and abbreviations. Whenever a new fault is identified, the 

algorithm searches for the same fault that has been stored in 

the corpus and maps the corresponding resolutions ranked by 

their frequency. These extracted resolutions are provided as 

suggestion for maintenance along with the fault alerts. This 

will help the operator to take quick action. The power of this 

algorithm improves as the size of the data grows. Therefore, 

this library of information can be continuously/periodically 

updated as and when new faults occur or updated with expert 

knowledge-based recommendations, thus improving the 

variety, and ranking of recommendations the algorithm can 

provide. 
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Figure 6. Fault-resolution tree built from past maintenance records. 

Figure 6 shows a fault-resolution tree identified for the 

group of pumps. The tree building involves entries of faults 

and corresponding resolutions by expert recommendation. 

This information can be supplemented by maintenance 

record entries in the plant. To prove the concept, we utilized 

all the possible failures from past records. The first level in 

the chart lists various modes of failure that can occur for the 

given group of pumps. In the second level, it shows the 

corresponding resolutions for each of these faults. This 

generated mapping combined with the statistical analysis of 

the fault-resolution branches will be used to create 

suggestions for root cause and recommendations for 

maintenance action whenever an alert is generated. 

3. Results 

The steps discussed in the previous section were applied 

on multiple PD pump groups and alerts were generated and 

compared with actual entries in the maintenance record. The 

threshold values of the two KPIs are tuned such that most of 

the faults reported in the maintenance record are detected, 

and the faults were identified as early as possible so that the 

operator has enough time to act before the pump goes into 

failure. The Table 1 below shows the summary of fault 

detections for different pump groups at a Water treatment 

plant in Singapore with the best KPI threshold settings. 

The best threshold setting was selected based on high true 

positives and low false positive rates. However, as can been 

in Table 1 that there were cases of undetected faults (false 

negatives), especially in lime dosing pumps, where the flow 

deviation was not significant and hence the fault could not be 

detected. There were also cases where a low flow anomaly 

was detected, however no maintenance records were raised 

for months, which indicated that the equipment might not be 

faulty. These cases were considered as false positives. 

Table 1. Summary of alerts detected in 3 selected equipment groups. 
Detection category Hypo pump group Lime dosing Pump Sulphate dosing 

Successful detection validated by maintenance records (True positive) 5 6 10 

Undetected faults recorded in maintenance records (False negative) 2 5 0 

Additional detections not reported in maintenance record (False positive) 2 2 1 

 

4. Conclusion 

Most of the FDI methods for rotating equipment (such as – 

pumps) condition monitoring presented in the literature are 

demonstrated using simulated and experimental data. Very 

few available literature methods were illustrated using real 

industrial data from a pump. Hence, applicability of these 

literature methods in real industrial applications are limited. 

To the best of our knowledge, there is not many FDI method 

proposed in literature particularly for reciprocating positive 

displacement pumps which solely relies on routine operation 

data such as – speed, stroke length, discharge flowrate and 

readily detects any anomaly in the pump in the form of 

underdosing, overdosing, unstable flow etc. Therefore, there 

is a strong motivation for developing a novel FDI method for 

monitoring pumps (particularly, positive displacement pumps) 

in a real industrial application using only routinely available 

operation data. In this paper, we propose a novel FDI method 

by combining the power of machine learning methods 

complemented with expert knowledge and maintenance 

history for early fault detection and diagnostics in a pump. 

The proposed method uses multiple sources of data to 

provide a comprehensive solution with early identification of 
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problematic “fingerprints” and recommendation for 

maintenance actions. Such solutions help to optimize plant 

operation, maintenance, prevent catastrophic failures and 

downtime. The strength of the solutions lies in the fact that 

the models can (and need to) be updated over time to make 

the predictions and recommendations more accurate and able 

to accommodate for other operational changes over time. 
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